PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA

RECEIVED: October 12, 2006
ACCEPTED: November 20, 2006
PUBLISHED: December 12, 2006

Running-coupling effects in the triple-differential
charmless semileptonic decay width

Paolo Gambino
INFN, Sezione di Torino, and Dipartimento di Fisica Teorica
Universita di Torino, Via P. Giuria 1, I-10125 Torino, Italy
E-mail: gambino@to.infn.iY

Einan Gardi
Cavendish Laboratory, University of Cambridge
Madingley Road, Cambridge, CB3 OHE, U.K., and
Department of Applied Mathematics & Theoretical Physics,
Wilberforce Road, Cambridge CB3 OWA, U.K.
E-mail: bardi@hep.phy.cam.ac.ul

Giovanni Ridolfi

INFN, Sezione di Genova, and Dipartimento di Fisica
Universita di Genova

Via Dodecaneso 33, I-16146 Genova, Italy

E-mail: giovanni.ridolfi@ge.infn.id

ABSTRACT: We compute the fully-differential B — X, I decay width to all orders in
perturbation theory in the large—(3y limit. Each of the five structure functions that build
the hadronic tensor is expressed as a Borel integral, summing up O(Cr g 710[2) corrections
for any n. We derive analytic expressions for the Borel transforms of both real and virtual
diagrams with a single dressed gluon, and perform an all-order infrared subtraction, where
the Borel parameter serves also as an infrared regulator. Expanding the result we recover
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1. Introduction

The measurements [f[, P of semileptonic b decay branching fractions (BF) play a crucial
role in the determination of the CKM matrix elements [B, [I], which form the basis for many
precision tests of the Standard Model and provide an input for new physics searches. While
any potential discovery of new physics in the flavor sector is associated with loop—induced
transitions, the CKM parameters are most reliably determined by tree-level weak decays.
Here two fundamental ingredients are |Vg,| and |Vyp|, which are measured in semileptonic

b — c and b — u decays, respectively.



Both inclusive and exclusive semileptonic measurements are used to extract these pa-
rameters. Inclusive measurements are inherently more robust owing to their limited sen-
sitivity to the hadronic structure of the initial and final states. However, since b — u
transitions are about 50 times less abundant than b — ¢ ones, kinematic cuts must be ap-
plied in order to isolate the b — u decays and measure |Vy},|. Consequently, the calculation
of the fully differential spectrum is essential for precision measurements of |Vyp|.

The theoretical calculation of inclusive decay spectra is complicated by the presence
of large perturbative and non-perturbative corrections. In b decays into light quarks,
eg. B — X,y and B — X,Ilv, most events are characterized by jet-like momentum
configurations, where the invariant mass of the hadronic system in the final state is small.
When computing the differential spectrum, or the BF with kinematic cuts, one encounters
parametrically—large Sudakov logarithms as well as non-perturbative corrections that are
associated with the momentum distribution of the b quark in the meson [f—[Lg].

Recently, there has been significant progress in the application of resummed pertur-
bation theory to compute inclusive decay spectra using the method of Dressed Gluon
Exponentiation (DGE) [[[§-PR(]. Underlying this approach is the realization that running—
coupling corrections play an important role in shaping the spectrum. Beyond the purely
perturbative issue, infrared renormalons are useful in consistently separating between per-
turbative and non-perturbative corrections while retaining the predictive power of pertur-
bation theory.

The significance of running—coupling corrections stems from the fact that the gluon
virtuality, which sets the effective scale of the coupling [R], is typically lower, sometimes
significantly lower, than the hard scale my that is used as the default renormalization point.
Consider for example the fully—integrated b — X, (v width,

2
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which is known to NNLO [g],
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where N; is the number of light flavors. Here we have split the bs coefficient computed
in ref. 7] into a running-coupling part!, proportional to 3y, and the rest. We find that
with Ny = 4 the former yields bgo ~ —26.84, while the latter b5** ~ 5.54, adding up
to by ~ —21.30. Evidently, the running—coupling corrections are dominant. These large
corrections are related to the leading infrared renormalon of the pole mass my, which is
located at u = 1/2, where u is the relevant Borel parameter. The eventual cancellation [P4—
P of the corresponding O(A) ambiguity in eq. ([-J)) involves the overall factor mj on the
one hand and the series in the square brackets on the other. This means, in particular,
that higher-order corrections O(Cr B 'a?) in eq. (1) are large and form a non-summable
series. Owing to the proximity of the u = 1/2 renormalon to the origin of the Borel plane,
and the relatively low scales involved, the factorial divergence becomes relevant already at
the first few orders.

Let us consider now the differential decay width. As usual, the effective scale de-
pends on the kinematics; in the region selected by kinematic cuts, where the invariant
mass of the hadronic system is small, radiation is confined to be soft or collinear. An
obvious consequence is that the effective scale of the coupling gets small, and therefore
large running—coupling corrections should be expected.

Moreover, the normalized spectrum too is affected by infrared renormalons. Despite
the absence of the overall factor mg’, infrared renormalons show up in the normalized spec-
trum because the support of the on-shell decay width is set by m;: an O(A) variation of
the pole mass amounts to an O(A) shift of the Born—level —function spectrum. Therefore,
all the moments of the normalized b decay spectra, defined at the partonic level, have an
infrared renormalon ambiguity at v = 1/2 R7]. In DGE the corresponding ambiguity can-
cels between the pole mass and the resummed Sudakov factor upon computing the spectra
in physical, hadronic variables [17)]; subleading renormalons, u > 3/2 are present and form
the basis for parametrization of power corrections [[§—[1§]. In other approaches [P, B9
infrared sensitivity in the “shape function” region is dealt with by using an infrared cutoff
in momentum space and absorbing the soft contribution into the definition of the non-
perturbative parameters. In any case, the presence of this infrared sensitivity at the level
of the partonic calculation cannot be ignored. Computing decay spectra to higher orders
in perturbation theory, one therefore expects to find large running—coupling corrections.

Recently, a first complete NNLO calculation of an inclusive decay spectrum has been
performed [B0, B1]] for the case of B — X7 through the effective magnetic dipole operator.
A striking feature of this result is the dominance of the O(CgBya?) contribution (which
has been known since a while [BJ]) with respect to other color factors appearing at this
order. The similarity of the two processes, B — X,y and B — X, I, and the dominance
of running—coupling corrections in the former, leave no doubt that these corrections are
dominant also in the latter.

In the case of the triple-differential B — X, I spectrum, the perturbative expansion
is known in full to O(a;) (NLO) only [BJ]. NNLO corrections have been computed in full

!The running-coupling part of this coefficient was first computed numerically in ref. [@] This paper
pointed to the low BLM scale characterizing the expansion of the total width in semileptonic decays.



only for the integrated width 3], eq. ([.1]) above. In addition, O(CrBya?) real-emission
corrections have been recently computed [B4] for one particular single-differential spec-
trum, namely the distribution in the (small) “plus” lightcone-momentum component, p}L.
The complete O(CpBia?t!) have also been computed numerically for the five structure
functions of B — X.Iv [BY]; the results for physical observables obtained with a finite
charm mass can in principle be extrapolated numerically to the massless case, but this
procedure involves delicate numerical cancellations and lacks the flexibility necessary in
practical implementations.

Additional results beyond the NLO are available in the Sudakov limit [1d, [[7]: the
Sudakov exponent has been determined at NNLL accuracy [B§-Bg], and to all-orders in
the large— 3y limit 27, [[7].

In this paper we perform an all-order calculation of the triple-differential B — X,lv
spectrum in the large—(3y limit. We derive analytic expressions for the Borel transform
of real and virtual diagrams with a single dressed gluon, which represent the sum of
O(CrByta?) corrections for any n. We then preform an all-order infrared subtraction
directly in terms of the Borel variable. By expanding the result we recover the known
triple—differential NLO coefficient [BJ], and obtain an explicit expression for the O(CrSpa?)
triple—differential NNLO correction. By integrating this expression we confirm the results
of the single—differential p;' spectrum [B4] as well as the 3y term in the integrated width[R3).

The O(CrfBoa?) triple differential width we compute here is an important ingredient
in improving the determination of |Viy,| from inclusive B — X, I measurements with a
variety of kinematic cuts. In this paper we do not perform any numerical studies; these
will be reported on separately.

The structure of the paper is as follows. In section J] we recall the kinematics and set
up the notation. Next, in section [ we present the real-emission “characteristic function”
based on the calculation of ref. [BH|, which was performed with an off-shell gluon. In
section | we derive a Borel representation of the real-emission corrections; in section [
we expand the Borel function to obtain explicit formulae for coefficients at the first few
orders. Next, in section fl we consider the Sudakov limit and extract the non-integrable
terms in the real-emission contribution to all orders, confirming the results of [R7]. Using
the Borel variable as an infrared regulator, we prepare the tools for an all-order infrared
subtraction. In section [] we compute the virtual diagrams using a Borel-modified gluon
propagator. We then perform the subtraction of infrared singularities, directly in terms of
the Borel variable. In section f we combine the results of both real and virtual diagrams
for the different structure functions, getting explicit expressions for the coefficients of the
triple-differential rate at NNLO. In section [fj we demonstrate the way in which infrared
subtraction gets modified depending on the kinematic variables used. Finally, in section [L(]
we summarize our conclusions.

2. Definitions and kinematics
Let us write the triple—differential width of

b(p) — () + (ps) + Xu(p))



as

dr G% Vi |?
dp] dp; dEl 1673

L, (p1, p5) W (p, q), (2.1)

where the total momentum carried by the leptons is ¢ = p; + p5 and Ej is the energy of the
charged lepton in the b rest frame. The momentum of the hadronic system is expressed in
terms of lightcone components, namely
+ .
p; = Ej ¥ |pjl, (2.2)
SO
pj_ = amy and p;r = [Bmy (2.3)

are the large and small lightcone components of the “jet”, respectively. They obey
0<p<a<l. (2.4)

The relation of these variables with the invariant masses of the “hadronic” (partonic) and
the leptonic systems, respectively, is

p; = mjaf; ¢* =mj(1—a)(1 - p), (2.5)

where 0 < p? < (1 — \/q_2>2 Throughout the paper, m; represents the pole mass of the b
quark.

It is convenient to write the normalization of the differential width in terms of the
total tree-level width

G2 |V |> m?
Ty= £ 4l "% 9.6
’ 19273 (2.6)
namely express eq. (P.1]) as:
d®r 1 4 dTl 1
dadide — 3" o= = 6T _LV 717W“V sq)s 2.7
dadide ~ 2" dpldp; dE,  Cmi " (b1, o)W (p, @) (2.7)

where x = 2E;/my,. Phase-space integration then yields:

1—-ra
Tyoy= [ da [ d
b / O‘/ m‘/1 dadﬁdm

= 6Fo/ da/ dra/ll - —5 Ly (01, o)W (p, q), (2.8)

where we use r = 3/« following [L7].

The choice of the lightcone variables in eq. (R.I]) is motivated by the fact that the
final state is typically jet-like: at Born level pj = 0 so most events are characterized by
p? < m%, namely 8 < «. While the first NLO calculation of the triple-differential b — ulv
spectrum [B3] used other kinematic variables, the advantages of lightcone variables have
recently been acknowledged by several authors [P§, B4, [[4, [[7].

For massless leptons, the leptonic tensor is given by:

prvo

LM (py, pi) = 0Dy + 0Py — D1 - Pog"” — i€"* 7 pypoy. (2.9)



Lorentz decomposition of the hadronic tensor W*¥(p, q) gives rise to five scalar “structure
functions”:

W (p, q) = =Wi(a, B)g"" + Wa(a, B)v"v” +iW3(a, B)e"™7vpds

e o (2.10)
+ Wala, 8)4udy + Ws (o, B) (0" ¢ +v"¢"),

where v = p/my, and § = q/my. WH (p, q) is related to WH(p, q) defined in [BF] by:

v 1 v
WH (p,q) = — W (p,q)
b

e (p,g) (2.11)

d@*,p]) | _ (a—p)
d(pj, pj)

j 9

Note that both W!*(«,8) and W («, 8) are dimensionless. Contracting the Lorentz
indices between the leptonic and hadronic tensors, eqs. (2.9) and (R.10) respectively, one
finds:

s L, 2o W (p,) = (1= @)(1 = ) Wi(a, )
b

1

~3 <x2 —z2-a-0)+1—-a)(l - B)) Wa(a, B) (2.12)

1
H-a)1=8) (2 L+ 5@+ 5)) Wala0),
where, as above, © = 2E;/my,. Each structure function W;(«, #) may be decomposed as:
Wi(a, 3) = Vi(@) 6(8) + Ri(a, B). (2.13)

The functions Vj(«) and R;(«a, §) have perturbative expansions in a(my). At the leading—
order (LO), R;(a,3) =0 and, for i = 1 to 5,

V(o) = [a, 4, 2, 0, —2]. (2.14)

Substituting (-13) with (2.14) into (.13) and using (2.7) one gets:

dSFLO
dadp dz

=T wole, ) 8(8); wola,z) =12z +a—1)2—z—0a) (2.15)

where T'g is given in (P.§). As usual, this Born-level result receives perturbative cor-
rections from both virtual and real-emission diagrams. Purely virtual contributions are
proportional to 6(3). These, however, contain infrared singularities that cancel against soft
and collinear real-emission singularities when performing phase—space integration near the
B — 0 limit. Thus, beyond the LO, the separate definition of V;(«) and R;(«, ) in (R.13)
requires a subtraction prescription. We shall return to this issue in section fg.

The full NLO, O(a;) result has been obtained in ref. B3], and checked in various papers
that considered higher-order running-coupling effects, including ref. [R4] (real emission)
and ref. [BJ (real and virtual corrections). The result was presented in terms of lightcone

variables in ref. [I7].



3. Real emission of an off-shell gluon and the characteristic function

Perturbative calculations of many observables in QCD, including inclusive cross sections
and decay rates can be improved by the resummation of running—coupling effects [21], B9~
[i4, BJ). Specifically, keeping just the leading term in the # function, one sums up the terms
proportional to gilag to all orders, the so called BLM terms.

Technically, running—coupling terms can be conveniently derived using the dispersive
method, see e.g. [40, {3, f4], where the one-loop calculation is performed with an off-shell
gluon. The calculation of the semileptonic decay “structure functions” R;(«, ) with a
single off-shell gluon was performed in ref. [Bg for the more general case of b — ¢ decay,
where the charm mass m, is kept. Here we use this result to derive the corresponding b — u
result by sending m. — 0. This limit leads to significant simplification that facilitates
obtaining closed form analytic expressions.

Further simplification is achieved by choosing the lightcone variables described above,
which are suitable for the final state “jet” kinematics. As we shall see, the result for R;(«, 3)
is completely symmetric under ov «— 3; only the phase-space restriction, eq. (R.4)), breaks
this symmetry.

The LO calculation of the real-emission diagrams with a gluon of virtuality m?] = §m§
yields:

as(mp)

Ri(a,B) — CF File, 3,€) + O(a?) (3.1)

with the following “characteristic function”:

Al =3 | o (2= L) s + S (D) aasol| 62

where the powers are y; = [1,2,1,2,2] and z; = [3, 3, 3,2, 3] for i = 1 through 5, respectively,

and P;(a, 3,€) and Q;(a, §,€) are polynomials in all their arguments. Finally,

R T

where

Vi=a-3. (3.4)

Note that the phase—space limits are
0<¢<ap, (3.5)
where the upper limit corresponds to the situation where the entire mass of the hadronic

system p? = mgaﬁ is given by the gluon virtuality.

4. Borel representation

The Borel representation of the result for R; in the single-dressed—gluon (SDG) approxi-
mation is:

00 2\
rsia ) = 5 [t <%> B (a3, u) “1)

0 b



2
=Cp Cgl)(a,ﬁ) w +C§2)(Oz,ﬁ)ﬁo <%mb)> _|_} ’

where my, is the bottom pole mass, A and o, are defined in the MS scheme, and 3y is defined
in eq. ([.3). T'(u) is the inverse Laplace transform of the coupling (see Appendix A); in the
large—f limit, where the renormalization—group equation is just one loop, T'(u) = 1. Re-
summation of running—coupling corrections beyond this strict limit can also be performed
using ([.1). This is briefly explained in Appendix [A.

The Borel function in eq. (f.I) can be derived from the following integral over the
characteristic function (see e.g. [, ] or section 3.1 in [E6]),

SDG — _o2u sin mu aﬁ% : —u
Bi (a,ﬁ,u) = —¢€ T /0 g E(aaﬁag)g )

(aB)"" bi(a, B, ), (4.2)

5, Sin 7wy

where F;(a, 8,€) is given in eq. (B.2) and, upon changing variables from ¢ to n where

1
bl ) = /0 dn (1 - )17 Fi(a, B, (1 - )af). (4.3)

We have performed the integral in ({.3) analytically, and checked the result by numerical
evaluation. Below we give a few details of the calculation and summarize the analytic
expressions for b;(«, G, u).

Writing 7% of eq. (B.d) in terms of n we have 7+ = (a8 — a — B)(1 — k+n), with

af —5(a+B£VN
af —a—p4

so using eq. B.4) v = (af —a)/(af —a —B) and k_ = (a8 — B)/(af — a — (). Given
eq. (B-2), the basic integral needed in eq. (.3) is of the form

Ky = (4.4)

/01 dn(1 — 77)11 _1ﬁin _ . 1u 2F1<[1, 1,2 — ’U,L,l{i)_ (4.5)

All the terms in eq. ([..d) can be expressed in terms of this specific hypergeometric function
with the two assignments of the argument, x4, and some additional rational functions. For
example, to integrate the log term in eq. (B.2) times (1 — n)? where j is a positive integer
(to account for Q;(a, 3,€) that are quadratic in £ we need j = 0,1,2) one first integrates
by parts and then uses eq. (f.5) to obtain:

! —1—u+tj Rt ' J—u 1
[ = = ) = = [y - gy "
= u)sz ey o FY ([1, 1,[2—u —i—j],ni).

Finally, there are known identities that facilitate integer shifts of the indices of hypergeo-

metric functions. For example, to express the hypergeometric function in eq. ([£.6) in terms



of our basic one in eq. ([£J) we need to shift the third index from [2 — u + j] into [2 — u].
This is straightforward to do using eq. (2.10) in ref. [i7).

The final result for b;(a, 3, u) takes the form
bi(aaﬁa U) =AY [Dl(a7ﬂ7u)< o F1 ([17 1]7 [2 - ’LL], ’%+> — oF) ([17 1]7 [2 - ’LL], ﬂ—))

+ \/XSi(a,ﬁ,u)< 2F1<[1, 1,12 - u],mr) + oR ([1, 10,2 — ul, ,@)>

+ \/XTi(a,ﬁ,u)] ,

(4.7)
where the entire u dependence of the coefficient functions is summarized by
Dig(a,8) | Dia(a,8) | Dii(a,8)  Disla, )
Di(a, B,u) = =* ’ ’ ’
(2 8,u) u + 1—u * (1 —u)? * 2—u
~ Siola,B) | Sia(e,B)  Sii(a,B) | Siala,fB) (4.8)
Sile, Bu) = L (1 —u)? Ry
Ti0(o, T (o, Ti (o,
Ty, By u) = ola, B) 4 1(a, B) i 2(a, B)
1—u 2—u

and where D; ;(c, ), S; (o, 8) and T; j(cv, ) are rational functions of a and /3. The explicit
expressions are given in Appendix [J. We note that there are simple relations between some
of these functions. For example, for any structure function ¢,

D;o(c, B) = (a + = 2af) Sio(a, B). (4.9)

It is straightforward to check that there are no renormalon singularities in BJ"“(«, 3, u)
of eq. (.J). As usual, single poles in b;(«, 3, u) are cancelled in B¢ («, 3, u) by the sin(mu)
factor, which is associated with the gluon momentum being timelike. The double pole in
bi(a, B,u) at w = 1, which could have resulted in a single pole in Bi?%(«, §,u), is in fact
not there: according to eqs. (f.7) and (B.§) its residue is proportional to

(2— Ky — n_)\/XS*;,l(a, B) + (k+ —k-)D;1(a, B) (4.10)

and therefore to (o + B)§¢71(a, B) + ]_N)i,l(oz, 3), a combination that vanishes for all i.

Thus, R;(«, ) are free of infrared renormalons. Nevertheless, the series for R;(«, 3)
are divergent and they are Borel summable only for large enough values of 3, owing to the
convergence constraint on the Borel integral in eq. (f.]) for u — co. The consequences
have been investigated in detail in the context of the radiative decay [1g], see section 2.3
there. In moment space, the convergence constraint is replaced by infrared renormalons [R7]
through the integration over 3 near 3 = 0, see eq. (6.9) below.



5. Expanding the Borel function

In order to obtain the perturbative coefficients cgn) (o, B) in the second line of eq. (1) one
expands the Borel function BP¢(«, 8,u) in powers of u, see eq. ([A.3). The expansion of

o Fy <[1, 1,12 - u],x) is known, see e.g. ref. [[7]:

1—u

o ([1,1],[2 —u],x) = { —In(1—2)4u %lnz(l —.%')+Li2(1‘):| (5.1)

a2 {—sm(x) ~In(1 — 2)Li(x) + Li(x) — é m3(1 — x)]
+u? [ — So9(x) —In(1 — z)Liz(x) + In(1 — z) S 2(x)
% m2(1 — 2)Lig(x) + i In(1 — 2) + S1a(z) + Li4(:c)} b }

where Nielsen integrals are defined by

_1\a+b—1 1
Susta) = i [ O - o) (5.2)

Expanding B{P%(a, 8,u) in eq. ({.3) in powers of u, and using eq. (5.]) to expand the
hypergeometric functions, we obtain the coefficients, expressed in terms of the functions of
Appendix B At O(as), using the definition of x4 in eq. ([E4) and the relation of eq. ([.9),
we get:

cgl)(a,ﬁ) = —)\yi{ —2(a+pB—-af)ln (g) Siola, B) + (a—B) Tio(a, B), } (5.3)

At O(Bpa?) we get

(0, 0) = —A‘yi{Di,o(a,ﬁ) [%1“2“ — )+ Liglsy)  3I®(1 =)+ L)

R4 K_—

i (Di’l(a’ﬁ) = Dio(a, §) + Dia(e, f) + %Dm(a,g)> <ln(1 —ky)  In(l— n))

— KR4 —Kk_
2In%(1 — k) + Lis (k) N TIn?(1— ko) + Lig(n_)]

R4 K_—

+ \/st‘,o(a,ﬁ)[

In(1—ky)  In(l-— m))
+

—K4 —KR_

+ VA (Sm(a, 3) — Sio(e, B) + Sia(a, B) + %Sm(a, ﬁ)) (

VA (Tala,) + 3Thate ) } + (5 - men) V)
(5.4)

Explicit expressions for c§1’2)(a, () that are obtained upon substituting the functions in

Appendix [B and collecting terms, are listed in Appendix [J. In this way it is straightforward
to derive higher—order terms in the single-dressed—gluon approximation.

,10,



6. The Sudakov limit

Having derived an explicit result for the Borel function it is straightforward to extract the
singular terms in the 8 — 0 limit, the Sudakov limit. The leading terms in this limit have
already been computed in ref. [27]. They have been extracted there — see section 3 and
appendix B — from an integral representation of the real-emission result for the triple—
differential distribution, which was computed directly in the Borel formulation; here we
re-derive it from the Borel representation ([L.1) of the structure functions computed in the
previous section based on the dispersive method.

The Borel function is given in eq. (.J) where b;(cv, 8,u) are explicitly written in
eq. (fE7). We wish to expand these results at small 3 keeping the other lightcone vari-
able a as well as the Borel parameter u fixed. In this limit k_ = 3(1 — a)/a+ O(3?) while
ky =1—f/a+ O(B?). This means that in eq. (J) 2 F} <[1, 1],[2 — ul, m,) can be readily

expanded at small § while o F} <[1, 1],[2 — ul, mr) cannot. To extract the leading terms at
B — 0 from the latter we first use the general identity:

(1= rp) sy
(6.1)
The new hypergeometric function in eq. (6.1), 2F1 ([1,1], 1+ u],1 — Kky), is of course

(L1 2 -l my) = (1) [—%zﬂ(u,u, Ltul1—ry )+

sin Tu

expandable at # — 0, while the non-analytic contributions are explicitly given by the

second term in eq. (B.1)).
With this replacement and using eqgs. (.9), ([.7) and ([.§) and the explicit expressions

in Appendix [B], we obtain the expected singularity structure [B7 (see eq. (3.17) in ref. [[7])
for small lightcone component f:

(aB) " VIO(a) 5"
3 u

[(1 — ) <§>_u— %Siizu <1iu + 1_1u/2>] x (1+0(8/a)),

where the last factor in eq. (B.J) serves as a reminder that integrable terms that are

BiSDG(a’ﬂauNﬁ—»O: X

(6.2)

suppressed by powers of (3 are excluded here.

As in the full R;(a, B), there are additional O(1/8y) contributions to B;(a, 8,u)|5_
starting at O(u!), corresponding to O(a?), the NNLO. These go beyond the large—3y limit,
and therefore beyond the calculation performed in the present paper. In contrast with the
full B;i(«, 3,u), these 8 — 0 singular terms are known in full to the NNLO [B7, [id, [7] —
see e.g. eq. (3.41) in [I7 — and they play an important role in Sudakov resummation.

The perturbative expansion in eq. ([l.]) corresponding to eq. (f.3) contains log-enhan-
ced terms of the form an) ~ In*(B)/B, with k < n. Going beyond the large 3y limit one
finds higher powers of the logarithms owing to multiple gluon emission: at the n-th order
one obtains In*(3)/8 where k goes up to 2n — 1, see eq. (6.8) and eq. (6.9) below.

Eq. (b.9) represents the small-3 limit of all structure functions except for i = 4 where

(n)

the LO vanishes, so the bremsstrahlung contribution is entirely integrable, ¢, ~ In” (9),
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with k£ < n. In the latter case we find the following leading small-3 behavior:

BEDG(a’ﬁ’u)zwﬂlﬂl—u) <@>u_sin7ru <( 4 2—|—a+ 2+a>

a u a U 1—uw)? 1—u 1—u/2

(6.3)

The decay width being infrared and collinear safe, the infrared singularities in eq. (p.9)
become integrable near the Sudakov limit once virtual corrections are included. It is there-
fore convenient to define an integration prescription absorbing singularities from virtual
corrections into the real emission part. Defining r = (3/a, we use the plus prescription as
follows:

/Oro drF(r) [TILL = @(1 ) /0’”0 ar(F(r) - F(0)) 7«1% (6.4)

where F'(r) is a smooth test function. Upon expansion in u, this definition reproduces the
(...)« distribution adopted in [B3, B4] and the plus distribution of [BH]. Equivalently, we can

use: 1 [ 1 ] 5(7”):[ 1 ] _ad(p)

14+u 14+u - 14+u
T T + u T + u

. (6.5)

Having defined the integration prescription, the real-emission coeflicients cgn) (o, B =ra),
at each order n in the expansion ([£1), are divided into two parts: the singular part of
(6.9) is put under a plus prescription, and the remaining, regular part (which requires no
prescription) is left unmodified:

(n) (n) sing. (n) reg.
ST + ¢ . 6.6
¢ [cl ] . c (6.6)

Considering in particular the first two orders 0(1’2)(a, B = ra) of egs. (b.3) and (p.4), which

7

are written explicitly in Appendix [0, the part that is put under the plus prescription is:

LO [0 nLr
NORIYNy Jp Vi~ (o) [ In(r) Z}}

« o or Ar
LO 2
(2) sing. B - Vi () 31In%(r) 13 In(r) 6.7
¢ (a, 6 =ra) = - [2 " + ( 2In(a) + D " (6.7)

+ <zln(a)+7r—2 - §> 1}
2 6 24 ) r
These expressions are consistent with eq. (3.41) in ref. [[[7], where at the NNLO additional
terms, with different color factors, are included.

The subtraction corresponding to this integration prescription will be applied when
regularizing the virtual corrections, see eq. (6.13) and section [ below. It should be em-
phasized that defining plus distributions with respect to 7 is just a matter of convention,
and depending of the kinematic variables used other choices may turn out more convenient.

In section f| we shortly discuss two alternatives, demonstrating the way in which different
infrared—subtraction procedures shuffle terms between the real and virtual contributions.
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As discussed in refs. [P7, B, (7], eq. (6.2) contains infrared and collinear singular
contributions that are associated with two subprocesses, which decouple in the Sudakov
limit, the quark distribution (in an on-shell heavy quark) with momentum O(m;/53) and
the jet with virtuality O(myv/aB3). The two terms in the square brackets in eq. (p.4)
correspond to these two Sudakov anomalous dimensions, respectively, which were computed
here, again, in the large—(Gy limit.

To perform Sudakov resummation, accounting for multiple soft and collinear radiation,
we follow [[7] and define moments of the structure functions with respect to r = 3/a, in
accordance with the plus prescription (f.4):

e = [(as(1-2) W)
0
= H;(a) x Sud(mpa, N) + AREN) (), (6.8)
where Hi(a) = Vi(@)|jage g, T - We can deduce the structure of the Sudakov exponent

from eq. (f.9):
Sud(mpa, N) = exp{% /OOO d—uT(U) < A22>u

0 U a’m

which we wrote as a Borel integral (in the DGE form) with

5, 1sinmu 1 1

Bj(u)hargeﬁo = e3u§ p— <1_u + 1_u/2> (610)
5

Bs(u)‘large Bo — egu(l - u) (611)

In the exponent in eq. (6.9) we added, under the Borel integral

% [* i @_;)“x [ ]

the singularities that are required for writing the » — 0 non-integrable terms of eq. (p.)
as a plus distribution (eq. (6.4)):

a—2u

BIVGI0, ), = G | B) — 2035 0] (6.12)

a2 g3t (1—u) sin Tu 1 . 1
= —_ u —
2u? mu \l—u 1-—u/2

_ 1 25\ 1 9 25 1 5 245
=55 + <ln(a) 12) ” <ln () G In(ca) R > + O(u),

making the moments in eqs. (6.§) and (b.9) above finite. These terms will be subtracted
from the virtual corrections in eq. (.1§) below. As shown explicitly in section [] this
subtraction exactly cancels the infrared singularities of the virtual corrections.
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7. Virtual corrections

The virtual contribution to the structure functions? can be decomposed as in eq. ([.10):
VI (p,q) = =Vi(a)g"” + Va(a)vhv” + iVa(a) P vpGo + Vi) qudy + Vs (a) (0"§” + 0" ¢").
(7.1)
For each structure function one has an expansion in the coupling, see eq. (7.4) below;
according to (R.14), at leading order (Born level) we have:
VIS (0, q) = —agh” + 4P + 2" v,4, — 201G + 0" q"). (7.2)
Let us now compute the virtual corrections in the large— limit. To this end we modify
the gluon propagator according to

Juv Guv
k2 (LR (7.3)

With this modification®, the momentum integration should yield directly the Borel function
B[Vi](a,u) in

C e AZ\"
VPG (q) = ViLO (@) + _F/ duT(u) <—2> B[Vi](a,u) (7.4)
Bo Jo my

However, in contrast with the real-emission result of eq. (1)) that is regular for u — 0,
the Borel integral of the virtual diagrams is obstructed by a double pole of B[V;](«,u) at
u — 0, which corresponds to the usual double-logarithmic infrared singularity. Therefore,
after computing the momentum integral we shall perform infrared subtraction using the
singular terms (6.12). This would finally yield a meaningful Borel representation for the
virtual contribution, eq. (7.21]) below.

We define z = q2/mg, and in the following, since § = 0, we have z = 1 — a. The result
of the virtual diagrams, where the gluon propagator is modified according to ([.J), takes
the form*:

where

BlVAl(a,0) = o3 [ 3000 + 500 + (1= ) () + o) — D) |

2Qur Lorentz decomposition is similar to that of Appendix B in ref. [@]7 it differs from that of ref. [@]

3See [@] or section 3.1 in [@]

“This result agrees with egs. of (B.11) and (B.12) in ref. [@] (with m. = 0). There a gluon mass is
introduced instead of a Borel parameter.
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1+ 1>_ 31—uF(2+u)F(1—2u)
x u

u '3 —u)

_ _i_ﬁ_u(gﬂ—z) £ O (.7)

is the result of the b-quark self-energy diagram®, while the u-quark self-energy diagram
vanishes in the Borel regularization, as the momentum integral has no scale. All the
remaining terms in ([.6) arise from the vertex correction diagram. Let us recall that the
Borel parameter regularizes both ultraviolet and infrared logarithmic singularities, just as
in dimensional regularization. Thus, © — 0 singularities in individual diagrams arise from
both the ultraviolet and the infrared and no distinction is made between them. However,
in the present context we know in advance that the ultraviolet divergencies cancel out in
the sum of all diagrams — the current is conserved — and therefore the remaining u — 0
singularities in the sum of diagrams are immediately identified as infrared ones. We will
address these singularities below.

Let us now briefly describe the calculation of the vertex diagram and define the integrals
entering eq. ([7.6). Upon combining the propagators using Feynman parametrization, where
the b—quark propagator is associated with the Feynman parameter z and the u—quark
propagator with y (so the gluon with 1 —z — y), one identifies the scale

M? Emgaﬂ(y(l—z)—i—x), (7.8)

where 2z = ¢%/ mg as above. Performing next the loop—momentum integral in four dimen-
sions one obtains integrals of the following form over the Feynman parameters:

Inpe(z,u) = /01 dx /01_36 dy {:(;i (_1 z_) i;;/]):-‘ru’ (7.9)

where a, b and ¢ are non-negative integers. This integral is computed as follows. One

first changes variables into from y into w = 1 — x — y and then from z into ¢ where
x = (1 —w)(1 —t). The integration over both w and ¢ extends over the interval [0, 1].
In these variables the integrand factorizes and, assuming that the parameters a, b and ¢

5Our result for the self-energy diagram agrees with that of ref. @]
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are such that both integrals exist (which is always the case for the required integrals) the
result is:

MNa—c—u+1I'+1)I'Q1+w)'(2+a—2c—2u+b) "
re+a—c—u+bI'B+a+b—2c—u)
oFi(fe+u,b+1],[2+a—c—u+1],z2). (7.10)

Ia,b,c(z7 u) =

At the next step, known hypergeometric identities (see e.g. [[£7]) are used to bring the result
into one that is convenient to expand at small . In all cases it is possible to write the
result in terms of a single hypergeometric function oFj([1,1 4 u], [2 — u], z). This function
has the following expansion (type E in ref. [47)):

1—u

oF1([1,1 +ul,[2 —u],2) ~ . {—ln(l—z)—u<—ln2(1—z)—Lig(z))

n u2< — 281 5(2) — 2In(1 — 2)Lis(2) + Lig(z) — %1113(1 - z)>
— 48 (252,2(27) +2In(1 — 2)Lig(z) — 41n(1 — 2)S12(2)
~2In2(1 — 2)Lis(2) — %1n4(1 —2) — 4815(2) — Li4(z)) + (’)(u4)}.
(7.11)
Following ref. [BF] (see eq. (B.3) there) we separate the numerator of the vertex
diagram into N!*, which is composed of terms having powers of the loop momentum in

the numerator (c¢f. eq. (B.6) in ref. BY]) and other terms, N§" (cf. eq. (B.9) in ref. [BY]).
In eq. ([7.4) above, the N gives rise to C(z,u) in B[Vp](a, u):

Cleu) = 2K (2 0), (7.12)

u

where

= [ [
[(1 — 2u) F(l—i—u)[ Cu(l -
T(3 - u) 1—u

?) oF1([1,1 + ul,[2 — u], 2) (7.13)

1 3 1—2 )
_2+u<4—|— 5 ln(l—z)>+0(u),

while the N} is the source of all the other terms, where the following additional integrals
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show up:

(z,u) / duv/1 ’ 1_):f+;y)u
14+ w)I'(1 —2u) 2uz
2u2F(1—u) (1-2) [1 1-—

2F1([1, 1+ul,[2- u],z)}

n(l— =~ 2 w (7.14)
= 1iz{222 ! (1u ) + E+ln2(1—z)+Li2(z)— §<ln(1—z)ﬂ'2
— 3¢5 + 6S12(2) + 61n(1 — 2)Lis(2) — 3Lig(2) + 2In3(1 — z)) + O(u2)},
1=z Yl—z—y)x
(z,u) / dx/ M2)1+uy)
(1 —2u)T'(1 +w)
(1 ot —wy L1+ 2, 2) (7.15)
_ —MT_Z) + %(1112(1 %)+ Lis() ~ In(1 — 2) ) u+ O(?),
11—z T — U
(z,u) / dm/ M2)1+uy) Y
(1 +uw)'(1 - 2u) u(l+ z2)
U2 w2 [1 ﬁQFl([l’H“]’[z_“]’z)] -
7.16
= 1iz{—%—1+ (1—|—%>ln(1—z)
+ [<1 + %) (—ln2(1 —2) +In(1 — 2) — Lig(2)) — éﬂ'Z - 1] u + O(UZ)},
and
1—x r— )¢
Ioy(z,u) / dx/ M2)1+3) §
ra ;’Fzgr(l ; 2u) [1 - <1 NI ﬁ) JFL([1,1 4+ ), [2 — u],z)]
(7.17)

= 2—;{ —In(1—2)—z+ [ln2(1—z)+ <z—%> In(1 — 2)
- ;z +Li2(z)} u+ (’)(uQ)}.

Eq. (.3) is written such that all the v — 0 infrared singularities are in the first term.
This term is proportional to the LO result, as must be the case. As mentioned above, in the
absence of such singularities one would interpret the expansion of the virtual corrections,
starting at O(a), according to eq. ([.4) above. Obviously, since there is a double pole
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at u = 0, the u-integral (.4) is ill-defined. One should first perform subtraction of the
singularities.

Using the explicit results for the integrals given above, it is straightforward to check
that the v — 0 singularities of B[Vp](a, u) in eq. (7.§) do indeed coincide with eq. (6.19),
that was determined in section fj by defining the plus distribution for the real-emission
terms. After subtracting from B[Vp](a, u) in eq. (7.4) the terms in eq. (.13) one has

BIV*](p,q)],eq = | BVol(e,u) — B[Vol(e, u)lng | * Vo, q)
- B[Vi[(
+ B[Va)(
—|—2B[ V3]
B[Vi] (e, u
+B[V5](a

a,u) gt
o, u) vt (7.18)
(o, u) P7v,q,

) Gud
,U) (v“q +v"g").

Next, let us split the regularized terms proportional to V{ using eq. (F2) and absorb
them into the five different structure functions; we define:

B[VIW](p’ q>|reg. == B[Vl](a’u)|reg. guy
+ BVa](@, u)| o, 00"

reg.
+1 BIV)(0,)lyeg. @ 0,ds (7.19)
B[‘/4 « u)|reg qqu

I(
BVsl(a, u)] eq (07" +0"").

Finally, using eq. ([.q) with the explicit results for the integrals we get:

BIVA](at, 1)) g, = ae@{% G(u) F(u, o) + <% +14 %u - gu2> G(u)
S e (e ) )
BVil(@s g = & BVl + 22 G By, 0
BV, 0) g, = = BN, 0) g
BV g = 1 o600 | Z = B 41,
B0 g = 2 BVl + 220 () [0 D g, o) ]
(7.20)

where G(u) = —I'(1 — 2u)I'(u)/T'(3 — w) and F(u, o) = 2F1([1, 1 +u], [2 —u], 1 — «).
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The infrared—subtracted virtual terms can be expanded order by order in u to get
the perturbative corrections in the large—3y limit. Let us write, in analogy with the real—

emission result ([.1), a Borel representation of V;(«) in (B.13):

SDG _ 1/LO ﬁ > A_2 ! o u
V() = V0 e) + S [Tt (55) B0l (r2)

::%M%a)+Cb[ﬁnmoﬁ%?ﬁ4ﬂfyaﬂ%<9%?Q>2+”.}

(1,2)

The coefficients v; "~ (a) for the five structure functions, ¢ = 1 to 5 are listed in Appendix D.

8. The triple—differential width at NLLO in the large—/; limit

In the previous sections we computed separately real and virtual corrections to the five
different structure functions in the decomposition of the hadronic tensor. For massless lep-
tons, only three of those enter into the expression for the spectrum (2.7) through (R.13). Let
us now combine the result into an expression for the triple-differential width. We present
explicit expressions up to NNLO which are valid in the on-shell quark mass scheme. Using
the results of the previous sections the generalization to higher orders is straightforward.

Let us write the perturbative expansion of the triple—differential width in the large—3,
limit as follows:

1 &7

Ty dadpdr ol @) o)

(8.1)

2
+CF @Kl(aaﬁax)_kﬁo (@) Kg(a,ﬁ,$)+"' )

where wy(a, x) is defined in (R.1§) and the NLO and NNLO coefficients K,,(a, 3,z) forn = 1
and 2, respectively, will be detailed below. At each order real and virtual contributions to
each structure function add up according to (P.13). The coefficients of the triple differential
width can therefore be written as follows:

ol f,2) = walo,2)6(8) + { K7™ (o, B.a) |+ Kye(onfa). (8.2)

where, as usual § = a7 and the plus prescription is as defined with respect to r according
to eq. (6.4).

To obtain the virtual coefficients w, (o, x) at each order n one substitutes the regu-
larized virtual coefficients of the structure functions ([.21]), which are given explicitly in
Appendix D for n = 1, 2, into eq. (R.19) and uses the result in (R.7). The virtual coefficient
at NLO (n=1) is

2

wi(a,z) = —wo(a,x)<Li2(1 —a)+ g +%> +6(a—1+2)2a—-5+2x)In(a) (8.3)
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and the NNLO result (n = 2) is:

wo(a,z) = 6(a—1+2x) [Lig(l —a)+In%(a) - % ln(a)]

— wo(a, ) [Lig(l — ) + 2Lig(a) + 1_é)L12(1 — ) (8.4)
— ([ 7.[.2
(1 =) — D n(e) + (o nfa) — G+ 0+ 1.

Similarly, by substituting the real-emission results for the structure functions into
(2.12), one obtains the corresponding real-emission coefficients for the triple differential
width. The singular part, K3 (o, 3,z), which enters (B.2) under a plus prescription (5.4),
is obtained by

Ky (a,ar,x) =6(1—a)(l —ar) an) Sing(aa ar)
-3 <952 —z2-a—ar)+(1—-a)1 - ar)) an) lean) (8.5)

1 .
+6(1—a)(1—ar) <x -1+ 5(04—1—047")) cgn)s'"g‘(a,ar).

Since at any order n the coeflicients cgn) Si"g'(a, ar) are proportional to the corresponding

LO result V;"O(a) for i = 1 to 3, one obtains the singular part K¢ (a,3,z) as the r — 0
singular terms corresponding to the expansion of (.4) in powers of u, which depend only
on r and «, times the following prefactor,

Qa, r, x) = wola, z) + 6(2&2 —Ta—4x+5+ 23:&) ar —6a%(1 — a) 2, (8.6)

that depends also on the lepton energy fraction z. In particular, using eq. (f.7), the NLO
result is

K (a, am, ) = 27 2) [_ln(r) 7 1] | &

and the NNLO one is:

sing. Q(Oé, r, CC) 3 lnz(’r) 13 ID(T‘) 7 7'('2 &5 1
K3 (o, ar,x)= - [5 " + 211r1(oz)+E . + 51[1(0[)4_?_ﬂ -

(8.8)

As expected, the O(r°) term in Q(a, r, ) coincides with the Born-level result wg(a, z).
However, owing to the contraction with the leptonic tensor in (B.5), Q(c, 7, ) also con-
tains some O(r!) and O(r?) terms that generate integrable O(r’) and O(r!) terms in
K& (o, er, ). These terms can be freely taken out of the {...}, brackets in §.9), as they
do not vary by applying the plus prescription (.4).
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Finally, the regular terms K («, 3, z) are obtained by
K (a,ar,z) =6(1—a)(l —ar) {cgn) (a,ar) — cgn) U (q, ar)]
-3 <m2 —z22—-a—ar)+(1-a)(1 - ar)) {cgn) (,aer) — an) e (g, ar)] (8.9)
+6(1—a)(l—ar) <x -1+ %(a + ar)) [cgn)(a,ar) - ci(,,n)smg‘(a,ar)},

(n)

given in Appendix |[J and in eq. (p.7), respectively. Using these expressions we find that

where, for n = 1 and 2, the explicit expressions for ¢, ’(a, 3) and its singular part are

the regular term at NLO is given by:

K (o, ar,z) = a((jllni_(?)zl Qi(a, 7, x)
-G e o) - I a0 s10)
_3(1-a)( _;;zl(Q—xr; 2ta+tar) (4a*r—10ar+7r —10a +9),

and at NNLO by

I4+r—ar)h(l+r—ar)

ar(l—a)(I—ar)(1—r)3 Pi(a, r, x)

Ky*(a,ar,z) = =2 K" (o, ar,z) In(a) — 3

1 In(r)Po(a, r, x) 9Q1 (e, 1, x) 6Qi(a, 1, 2)  Qa, 1, )
5(1—@7“)204(1—7“)4 a 04%1—7")4 IHQ(T)+< ()ctl—r)4 - ar ) 8
X [In(1+7—ar)ln(r) + Liy <%> — Liy <%>]
1Ps(e,myz) 1(l—z—ar)(l—z—a)
iaon ta (I-rPa Pafe 7. 2)
12z —24+a+ar)(l—ar)(l—a) 2 Qa, 7, T)
+Z 1-ra Ps(a, r, x)—g ar

(8.11)

where Q(o, 7, z) is given in eq. (8.6) and the polynomials Q;(c, r, z) for j = 1 to 3 and
Pj(a, 1, ) for j =1 to 5 are listed in Appendix [H.

9. Changing variables: alternative subtraction procedures

In the previous sections we have presented the results for the triple-differential b — ulv
width to all orders in the large—3y limit. We have chosen to describe the hadronic tensor
in terms of the lightcone variables v and 3 and defined plus distributions with respect to
r = [3/a. Let us now shortly describe how the results can be used with other kinematic
variables. This is often useful for deriving analytic expressions for partially—integrated
spectra, as done for example in ref. [BF] at the NLO level.

While the result for the virtual diagrams in a given regularization is unique — in
the Borel regularization it is given by egs. (7.6) and (7.§) — the infrared subtraction that
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renders their perturbative expansion finite, namely egs. ([.1§) and (f.19), crucially depends

on the corresponding real-emission terms that are put under the plus prescription, eq. (p.9),
and the variable (r) with respect to which the plus prescription is defined, see eqs. (f.4)
and (p.19).

Let us first demonstrate how to use the results of the previous sections in the same
kinematic variables a and 3, but with a different infrared—subtraction convention. Consider
defining the plus distributions with respect to 3; instead of eq. (6.4) we now write

/0 " asr(s) [ ﬁll*“L POG gy + /0 : B(FB) - FO) g O1)

T
that corresponds to the replacement

! —>[ ! } _ 9B 9.2)

j jE
pire el w

Taking the corresponding moments and applying (0.1)) we get (cf. eq. (b.)):

_ 1
W (a,v) E/O d3 (1 - )" W;(a, B)

= Z-(ﬁ)(a) x Sud® (my, o, v) + ARZ@(Q), (9.3)
where the superscript () is used to distinguish the current definition from our default one,
and

Crp [ du AZN\" Frw)r'(—2u) 1
Sud®) —exp ! T8 [" By () gy (RTC20 L
ud ™ (my, o, v) = exp Bo Jo wu () m? s(u) I'(v —2u) + 2u

i (TOIT() 1
By( )( T—w +u>” (9.4)

where the large—3y anomalous dimensions Bs(u) and B (u) are given in (.1(). Note that
the explicit o dependence in (0.4) is different from (f.9) owing to the different meaning of

the moment variable v compared to N. The subtraction term B[Vy](«, u)]sing‘(ﬁ), replacing
6-19), is therefore:

B[Vol(a, 0] e (5) = 2—112 [Bg(u) —2a7 " BJ(U):| (9.5)

2y

es sin Tu 1 1
= — 1— — —u
2u? [( w=a U (1—u+1—u/2>]

_ 1 BNL (LWL, 00
= 2u2+<ln(a) 12>u <2ln (@) 121n(a) 67T+72>—|—(9(u).

Finally, using (D.5) in eq. ([.1§) we get the corresponding infrared-subtracted version of
the virtual terms that replaces (7.19) in this alternative convention. The final results for
the virtual terms, equivalent to (7.20) immediately follow.
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In a similar way one can consider the subtraction using other kinematic variables. A
natural choice, which was used in [BJ] as well as in the original derivation of the singular
terms in [27)], is based on the invariant masses of the hadronic and the leptonic systems,

eq. (B.5). Let us define:

P? ¢
1—e=2—ap; =L —(-a)a-p)
b do )] 1 .
9 Q,
W (z,6) = W;(a, = Wi(a,
9.6 = Wi, 0)| G0 = L)
Here, infrared singularities are associated with the small jet mass limit p? — 0,
VIO(a=1-2) et
SDG _ 1
B; (Z,f,U)|§_,1 = (1 — 5)1+u 7 X
1-¢6 \ " 1lsinmu 1 1
[(1_u)<(1—z)2> 2 nu (1—u+1—u/2>] X(1+O(1_£)>’
(9.7)

so plus distributions are defined with respect to £ (i.e. subtracting 6(1 — &) terms) and the

corresponding moments are:

W (z,n) = /1 dg W (2, ¢)

0
= H"(2) x Sud® (my, z,n) + ARP(2), (9.8)
with
Cr [ du A2\ P(T(~2u) 1
© ey ) G [ du A2 Y 1
Sud™ (my, z,n) = e p{ B /0 —T(u) <m§> Bs(u) (1 - z) < Tn—2u) © 2u>

By L(n)l(-uw) 1
By ( )<7F(n—u) +u>]} (9.9)

Therefore, in these variables the subtraction term takes the form

B0 = 533 (1~ 20 Bs) = 2B(w) (9.10)

5
e3 2u sin u 1 1
= 1= 1—u) —
2u? [( 7 (1 =) U (1—u+ 1—u/2>]

_ B B T RS S I C R o S
= u2—|—<ln(1 z) 12) <ln (1-=2) 3ln(l z) 67T+72>+(’)(u).

As before, the corresponding infrared—subtracted virtual terms can be obtained using (9.1Q)

in egs. ([.1§) with a — 1 — 2.
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10. Conclusions

We have computed the perturbative expansion of the triple differential width in b — X, Iv,
to all orders in the large—3y limit. This is an important step in determining the differential
spectrum beyond the NLO.

Several independent partial calculations have been done in the past that provided

useful checks. We find complete agreement with the following:

e The NLO calculation of the five structure functions (or the fully differential width)

in ref. [BJ].

e The NNLO result of ref. PJ], eq. ([.T) above, where we could check the 3y piece upon
performing phase-space integration according to (.§).

e The NNLO single—differential distribution with respect to p;r, computed in the large—
By limit in ref. [B4], which we checked by defining the subtraction procedure with
respect to 3 = pj /my (see section ) and then integrating over z and a.

e The singularity structure of the